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Abstract8

We perform statistical analyses on spatiotemporal patterns in the magnitude distri-9

bution of induced earthquakes in the Groningen natural gas field. The seismic catalogue10

contains 336 earthquakes with (local) magnitudes above 1.45, observed in the period be-11

tween 1995-01-01 and 2022-01-01. An exploratory moving-window analysis of maximum-12

likelihood b-values in both time and space does not reveal any significant variation in13

time, but does reveal a spatial variation that exceeds the 0.05 significance level.14

In search for improved understanding of the observed spatial variations in physical15

terms we test five physical reservoir properties as possible b-value predictors. The predic-16

tors include two static (spatial, time-independent) properties: the reservoir layer thick-17

ness, and the topographic gradient (a measure of the degree of faulting intensity in the18

reservoir); and three dynamic (spatiotemporal, time-dependent) properties: the pressure19

drop due to gas extraction, the resulting reservoir compaction, and a measure for the re-20

sulting induced stress. The latter property is the one that is currently used in the seismic21

source models that feed into the state-of-the-art hazard and risk assessment.22

We assess the predictive capabilities of the five properties by statistical evaluation23

of both moving window analysis, and maximum-likelihood parameter estimation for a24

number of simple functional forms that express the b-value as a function of the predictor.25

We find significant linear trends of the b-value for both topographic gradient and induced26

stress, but even more pronouncedly for reservoir thickness. Also for the moving window27

analysis and the step function fit, the reservoir thickness provides the most significant28

results.29

We conclude that reservoir thickness is a strong predictor for spatial b-value varia-30

tions in the Groningen field. We propose to develop a forecasting model for Groningen31

magnitude distributions conditioned on reservoir thickness, to be used alongside, or as a32

replacement, for the current models conditioned on induced stress.33

Keywords— Groningen, Gutenberg-Richter law, spatiotemporal b-value variations, earthquake34

catalogue, induced seismicity, predictors35

1 Introduction36

The Groningen reservoir in the Netherlands is the largest gas field in western Europe. Since 2014, an-37

nual production volumes from the Groningen gas field are rapidly declining. Although approximately38
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one fifth of the initial ∼2900 billion m3 is still technically recoverable, the Dutch government has de-39

cided to cease production by 2023 or 2024 to ensure public safety and well-being. Induced earthquakes40

at the Groningen natural gas reservoir have put local communities at risk to a level that has led to41

societal and political upheaval (Vlek, 2019). The residential population living and working near the42

contours of the Groningen gas field is about half a million people. About 25 thousand damage claims43

for masonry buildings have been filed in the past years of which a part can be associated to individual44

seismic events. Older homes and farms built with single brick walls are especially vulnerable; these45

are either taken down and rebuilt or structurally strengthened.46

The 100-300 m thick gas-bearing Rotliegend sandstone reservoir at 2.6–3.2 km deep is overlain47

by a 1 km thick Zechstein salt formation that acts as a seal (De Jager & Visser, 2017). Around48

700 faults have been mapped in and below the reservoir (Kortekaas & Jaarsma, 2017). The weight49

of the overburden causes compaction of the reservoir formation due to gas withdrawal. Differential50

compaction results in localized stress concentrations along existing faults resulting in ruptures and51

earthquakes (Van Thienen-Visser & Breunese, 2015). Groningen-specific models describing this process52

are given by (S. J. Bourne, Oates, van Elk, & Doornhof, 2014; S. Bourne & Oates, 2017; Candela et53

al., 2019; S. J. Bourne & Oates, 2020) and references therein.54

The Gutenberg-Richter relation is a model for the magnitude distribution of earthquakes mostly55

characterized by its exponential coefficient, the b-value. Variations of the b-value express changes in56

the rate of occurrence of small earthquakes relative to large ones. Spatiotemporal b-value variations57

have been associated to various geophysical processes and circumstances for earthquake catalogues58

over natural tectonically active environments. Dependence of b-values on differential stress has been59

reported by C. Scholz (1968); Wyss (1973). More specifically, spatial b-value variations have been60

related to variations in tectonic regimes: thrust faulting systems being associated with relatively low61

values, normal faulting systems with relatively high values and strike-slip systems in between (Gulia62

& Wiemer, 2010; Nakaya, 2006; Schorlemmer, Wiemer, & Wyss, 2005). Also, the depth of occurrence63

of the events has been identified as a possible cause of b-value variations (Eaton, O’neill, & Murdock,64

1970; Wyss, 1973; Wyss, McNutt, & Wyss, 1998; Mori & Abercrombie, 1997; Spada, Tormann,65

Wiemer, & Enescu, 2013; Gerstenberger, Wiemer, & Giardini, 2001; Wiemer & Benoit, 1996). Other66

possible factors that may be relevant to the Groningen situation include stress fluctuations or regimes67

(C. H. Scholz, 2015; Langenbruch & Shapiro, 2014; Wiemer & Wyss, 1997) and the (fractal) geometry68

of fault systems (Rundle, 1989; Mandal & Rastogi, 2005; Hirata, 1989).69

In the context of induced seismicity, b-value variations have been attributed to several processes.70

These include: fluid-driven triggering mechanism possibly due to faults cutting into the reservoir71

and hydraulic connection between reservoir and basement at a CO2 injection site (Goertz-Allmann,72

Gibbons, Oye, Bauer, & Will, 2017); normalised shear stress instead of differential stress at the Basel73

Enhanced Geothermal System (Mukuhira, Fehler, Ito, Asanuma, & Häring, 2021); loading rates in the74

Lacq gas field (Lahaie & Grasso, 1999) and at the The Geysers geothermal field (Henderson, Barton, &75

Foulger, 1999); pore pressure, fluid content and injection activity at the Oklahoma oil field (Vorobieva,76

Shebalin, & Narteau, 2020; Rajesh & Gupta, 2021).77

Despite the large and increasing number of proposed b-value dependencies, the physical context78

is not always well understood. This especially holds for induced seismicity cases, where the number79

of studies is significantly lower (possibly due to the limited size of event catalogues). Considering80

the highly non-stationary characteristics of the anthropogenic activities, hazard and risk assessment81

models could benefit greatly from a better understanding of b-value variations. The current state-of-82

the-art seismological source models for the Groningen gas field (S. Bourne & Oates, 2017; S. J. Bourne83

& Oates, 2020) forecast spatiotemporal variations in both activity rate and magnitude distribution in84

terms of an induced stress metric. S. J. Bourne and Oates (2020) provided an insightful separation85

of literature studies on stress dependent and not dependent b-value variations. The choice of induced86

stress as a predictor is based on a comparative analysis of a suite of possible predictors in S. Bourne87

and Oates (2017) for seismic activity rate. However, it appears that the authors did not make a88

separate attempt to determine the most appropriate predictor for the magnitude frequency model.89

We consider it possible that the best predictor for activity rate may not automatically be the best90

predictor for the magnitude distribution.91
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In this paper, we perform statistical analyses on the spatiotemporal variations of the b-value in92

the Groningen gas field. We use a relatively small catalogue of 336 events with (local) magnitudes93

above the estimated completeness level of 1.45 over the entire observation time span from 1995-01-0194

to 2022-01-01. We investigate the predictive capabilities of five physical quantities (covariates) that95

describe static or dynamic properties of the Groningen field. The general goal of the investigation is96

to steer the development of forecasting models that allow a more precise assessment of the seismic97

hazard and risk analysis through more precise forecasts on the magnitude distribution.98

2 Data and Methods99

2.1 Earthquake catalogue100

The first instrumentally recorded seismic event in the Groningen gas field was an earthquake with local101

magnitude 2.4 in 1991. When the event took place, the mean reservoir pressure had already decreased102

from the initial 350 bar to below 200 bar. With ongoing reservoir gas production the induced seismicity103

continued leading to the installation of a regional borehole seismic network by 1995 (Dost, Ruigrok, &104

Spetzler, 2017). In the following years, the annual number of recorded earthquakes fluctuated around105

ten to fifteen events per year until about 2003 when it started to increase, to nearly 120 in 2017. Figure106

1 (top) shows the annual number of event in different magnitude categories. The largest magnitude107

observed to date is the 3.6 event near Huizinge in 2012.108

[Figure 1 about here.]109

The sensitivity of the monitoring network has not been uniform in space and time. A relatively110

safe (conservative upper bound) estimate of the completeness level over the entire period and region111

is a magnitude of 1.5 (Dost et al., 2017). For the purpose of the current study we adopt this level112

as the minimum threshold mmin for earthquakes to be considered. In fact, since we use unrounded113

magnitude values we slightly relax the threshold to mmin = 1.45, as the value 1.5 was specified for114

magnitude values rounded to one decimal place. Figure 1 (bottom) shows the annual number of events115

in the curated catalogue.116

We note that the current study might, in principle, benefit from an enlarged data set by taking into117

account a time-dependent completeness level (Dost et al., 2017; Varty, Tawn, Atkinson, & Bierman,118

2021). However, by taking a conservative assumption here, we largely steer clear of discussions on119

how the spatiotemporal completeness level should be estimated and to what extent imperfections120

would affect the results (Herrmann & Marzocchi, 2020, e.g.). Also, since one of our objectives is to121

provide forecasting models for risks that occur only at magnitudes that are several units larger than122

the completeness magnitude (say, magnitude 4 and beyond), it is questionable whether we should go as123

low as we possibly can. After all, the lower we choose the range of input data for our model inference,124

the larger the distance we effectively have to extrapolate at a later stage.125

We obtained the Groningen earthquake catalogue from the Seismological Service of the KNMI126

(KNMI, 2022b) through their FDSN Event Web Service (URL found in reference KNMI (2022a)),127

which provides origin times, locations in WSG-84 coordinates and unrounded local magnitudes. Epi-128

central coordinates have subsequently been transformed into the local Amersfoort/RD New coordi-129

nates system (epsg.io, 2022). The hypocenter depth is not used. We selected all earthquakes above130

mmin = 1.45, in the time window between 1995-01-01T00:00 and 2022-01-01T00:00. To avoid interfer-131

ence of earthquakes due to other exploration activities in the vicinity as much as possible, the spatial132

extent of the catalogue is limited to the Groningen gas field outline (NAM, 2021). The total number133

of events in the curated catalogue is 336. Figure 2 shows the catalogue of all earthquakes of the134

Groningen gas field.135

[Figure 2 about here.]136
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2.2 Gutenberg-Richter magnitude distribution137

We employ the classical Gutenberg-Richter relation (Gutenberg & Richter, 1941, 1944), as a model for
the magnitude distribution of induced earthquakes in the Groningen gas field. The survival function,
or probability P [M ≥ m|M ≥ mmin] of a random magnitude sample M exceeding m, under the
condition that it exceeds mmin is given by:

P [M ≥ m|M ≥ mmin] = 10−b(m−mmin), (1)

with b the exponential parameter, or b-value, and its probability density function as:

fM (m) = −dP [M ≥ m|M ≥ mmin]

dm
(2)

= b∗e−b∗(m−mmin), (3)

where b∗ = b log(10).138

Unlike previous authors (S. J. Bourne & Oates, 2020), we do not consider a dedicated prescription139

of the high-magnitude tail of the distribution such as a truncation or a taper. The focus of our efforts140

is to find evidence for any significant spatiotemporal variation of the magnitude distribution. However,141

as argued in Marzocchi, Spassiani, Stallone, and Taroni (2019) and S. J. Bourne and Oates (2020),142

among others, failure to recognize and accommodate a truncated or tapered tail may lead to artifacts143

appearing in b-value estimates, especially if the tail starts close to the mmin considered. However, we144

argue that if a tail effect is relevant, in the sense that it is somehow exposed in the data, then such145

artifacts may actually help to reveal any spatiotemporal variation of this effect through the analysis146

of the b-value. We only need to keep in mind that any significant spatiotemporal variation in the147

assessed b-value does not necessarily have to be caused by a variation in the exponential character148

of the distribution, but may also be caused by variations in the tail behaviour that we do not model149

explicitly.150

In this study we are interested in spatiotemporal variations of the b-value b, so that we can express
it as a function of time t and space coordinates x. More specifically, we test prospective predictors
that may act as a spatiotemporal covariate c(t, x) for the b-value:

b = gC(c(t, x), θ), (4)

where we use a generic functional form gC that depends on covariate c(t, x) and a, generally multivari-151

ate, parameter set θ, which represents, for example, the coefficients in functional form. We investigate152

a number of functional forms (i.e., models) with corresponding parameter sets, for which we infer153

information from the data.154

The inference of model parameters starts with expressing the log-likelihood of the model, condi-
tional on the data. The likelihood is defined as:

L(θ|{(ci,mi), i = 1...N}) =
N∏
i=1

fM (mi|ci, θ), (5)

with mi the magnitude, and ci = c(ti, xi) the covariate based on the time and location of each event
i out of N events in the catalogue. Each event in the catalogue is associated to a specific b-value bi:

bi = gC(ci, θ), (6)

such that the log-likelihood equals:

log(L)(θ|{(ci,mi), i = 1...N}) =
N∑
i=1

[log(b∗i )− b∗i (mi −mmin)]. (7)
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Note that for a constant b-value a maximization of log(L) is achieved algebraically in closed form
by the maximum likelihood estimate (MLE) b-value bMLE:

bMLE =
log10 e

m̄−mmin
(8)

where m̄ is the arithmetic mean of the magnitudes in the data set (Aki, 1965). For non-constant155

models the maximum-likelihood parameters can be found by maximizing the log-likelihood for model156

parameter vector θ to find θMLE. This search can be done using a gradient ascent algorithm or an157

exhaustive grid search.158

Assuming a constant b-value we have determined the MLE b-value for the entire catalogue: bMLE =159

0.96. The result is shown together with the empirical distribution in Figure 3.160

[Figure 3 about here.]161

2.3 Static and dynamic predictors162

In S. J. Bourne and Oates (2020), the authors propose two models for the spatiotemporal evolution163

of the magnitude distribution, that are both conditioned on the induced stress (”Coulomb stress”)164

predictor: one with a constant b-value and a stress-dependent high-magnitude taper, and one without165

a taper but with a stress-dependent b-value. On the basis of physical considerations and the result of166

some statistical tests the authors express a preference for the former model. As mentioned in section 1,167

they did not investigate or report alternative predictors for the magnitude distribution.168

Similar to the approach of S. Bourne and Oates (2017) for activity rate prediction, we investigate169

a range of physical reservoir properties as predictors for the b-value throughout the Groningen gas170

field. These prospective predictors are related to the geological layout of the gas reservoir, the gas171

depletion process itself, or a combination of both.172

• Reservoir thickness The reservoir thickness h(x) is a 2-D spatial representation of the thickness173

of the Rotliegend reservoir formation, provided by the field operator (NAM, 2021) and is given174

in units of meters. The thickness is assumed to be static (time-invariant) and independent of175

the gas production. The (relatively small) compaction of the reservoir due to the gas extraction176

is considered as a separate prospective predictor below.177

• Topographic gradient The topographic gradient Γ(x) is a spatially smoothed, 2-D, static measure178

of the roughness of the topography of the top of reservoir. This roughness is largely due to179

faults with varying offsets (S. Bourne & Oates, 2017). It is calculated based on the locations180

and offsets of the pre-existing faults in the reservoir, and is controlled by two parameters: rmax181

and σ. The parameter rmax describes an upper cut-off value for the local fault offset-to-thickness182

ratio. Faults with an offset-to-thickness ratio larger than rmax are disregarded in the calculation.183

The final property is calculated by mapping the fault offsets that pass the rmax filter onto a184

regular grid, which is subsequently smoothed by a Gaussian kernel with kernel size σ. As a185

result, the property is roughly proportional to both fault offset and fault density. A ready-made186

topographic gradient grid with parameter values rmax = 1.1 and σ = 3500 m is supplied by the187

operator (NAM, 2021; S. J. Bourne & Oates, 2020).188

• Pressure drop The pressure drop ∆P (t, x) is at any time t a 2-D spatial representation of the189

vertically averaged pore pressure depletion in the reservoir with respect to the original (pre-190

production) gas pressure, provided by the operator (NAM, 2021). This property is dynamic191

(time-dependent) and naturally depends on the gas production.192

• Reservoir compaction The reservoir compaction ∆h(t, x) is at any time t a 2-D spatial represen-
tation of the change in reservoir thickness as a result of the gas pressure decline. This covariate
is defined as:

∆h(t, x) = ∆P (t, x)× cm(x)× h(x) (9)
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where ∆P (t, x) is the dynamic pressure drop, cm is the poro-elastic coupling coefficient, and193

h(x) is the reservoir thickness. These are all provided by the operator (NAM, 2021). Reservoir194

compaction is a dynamic (time-dependent) property due to its dependence on the gas production.195

• Induced stress The induced stress at any time t is a 2-D spatial property representing the
(spatially smoothed) change in Coulomb stress on pre-existing faults according to the thin-sheet
model. It is calculated in accordance with S. Bourne and Oates (2017) as 1:

∆C(t, x) = Γ(x)×∆P (t, x)× cm(x)

H−1
s + cm(x)

(10)

196

where Γ(x) is the topographic gradient, and Hs is a stiffness parameter. Both Γ(x) and Hs are197

supplied by the operator (NAM, 2021). Induced stress is dynamic due to its dependence on the198

gas production. We note that the use of a spatial Gaussian smoothing kernel in the calculation199

of the topographic gradient makes it difficult to interpret the numerical values of this covariate200

field in terms of absolute stress changes. Rather, it is a metric that combines fault density201

of faults below a certain offset-to-thickness ratio and vertical compaction strain. In a stricter202

sense, it is perhaps best interpreted as a propensity-to-failure proxy, rather than Coulomb stress203

change.204

Along with the above five prospective predictors representing physical properties of the reservoir,205

we also take time as a possible predictor to complete a set of six predictors that we submit to the same206

sequence of statistical tests. Figure 4 illustrates the spatial variation patterns of the six predictors.207

The figures come without explicit legend, serving as a visual representation of the spatial patterns.208

For the dynamic predictors (pressure drop, reservoir compaction and induced stress), the situation at209

the end of the observation period (i.e., 2022-01-01) has been chosen. The numerical value ranges of210

the predictors are shown in Table 1.211

[Figure 4 about here.]212

In the statistical analysis that follows, earthquakes are associated, or ’labelled’, with the predictor213

values at the origin time and location of the earthquake according to the catalogue. For example, for214

the predictor reservoir thickness, we label each earthquake with the reservoir thickness at the location215

of the earthquake, while for the predictor induced stress, we label each earthquake with the induced216

stress at the location and the origin time of the earthquake. To facilitate the statistical analysis, after217

the earthquakes have been labelled, we perform a linear rescaling to the covariate values, such that218

the earthquake with the lowest covariate value receives a covariate value of 0 and the earthquake with219

the largest covariate value receives rescaled value of 1. In most figures, the minimum and maximum220

covariate values are simply labeled as ’min’ and ’max’ respectively.221

The labelling of each event by the predictor values determines an ordering of observed magnitudes222

specific to that predictor. These predictor-specific orderings are displayed in Figure 5. The correspond-223

ing value ranges are given in Table 1. If a reservoir property has a predictive capacity with regard to224

the magnitude distribution, then the ordering (and spacing) of the magnitudes may be distinguishable225

from random orderings. In that case, the property has the potential to be used as a predictor in a226

seismic hazard and risk forecasting. In the following section we use this concept of ordering to define227

a null hypothesis.228

[Figure 5 about here.]229

[Table 1 about here.]230

1Equation numbers in this footnote refer to S. Bourne and Oates (2017). From Equation 55 we obtain ∆C =
µHrϵzz−γHΓεzz. For steeply dipping faults that offset the reservoir, ∆C = −γHΓϵzz, which leads to Equation
57. The γ parameter is a field constant and is absorbed into the model parameter θ2, which gives ∆C = HΓϵzz.
Using Equation 15 Hϵzz = (H−1

r +H−1
s )−1ϵzz. Since ϵzz = ∆Pcm, we can write ∆C = (H−1

r +H−1
s )−1Γ∆Pcm.

Finally, using Equation 15 to obtain H−1
r = cm, we can write ∆C = Γ∆Pcm/(H−1

s + cm).
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2.4 Statistical toolkit231

2.4.1 Null hypothesis realization by random shuffling232

If a predictor has predictive power for the magnitude distribution, then that implies that the ordering233

of magnitudes relative to that predictor may carry information on variations and trends. This also234

means that when the magnitudes of the events are randomly shuffled, i.e., all magnitudes are reassigned235

in the catalogue randomly to the predictor labels, that information will be erased. As a result, such236

a random shuffling represents a realization of a magnitude distribution that carries no relation to the237

predictor. In other words, the magnitude distribution is constant relative to the predictor. Random238

shufflings may therefore be regarded as realizations of a constant distribution.239

In the following we consistently make use of random shufflings as realizations of a constant null hy-240

pothesis. If we observe a certain quantitative features in the data we may judge the feature significance241

from the occurrence frequency in random shufflings.242

An alternative approach to realize samples of the null hypothesis would be to generate (new) mag-243

nitude samples from a (constant) magnitude distribution based on the Gutenberg-Richter distribution.244

However, by applying the random shuffling technique we make sure that the generated statistics are245

not contaminated by any possible deviation of our observations from an idealized Gutenberg-Richter246

distribution. By exactly honouring the empirical magnitude distribution we can focus on the spa-247

tiotemporal variations.248

2.4.2 Moving window analysis249

To gain some first-order insight into the spatiotemporal variations in the magnitude distribution as250

characterized by the MLE b-value, we apply moving window analysis. We perform a 1-D analysis on251

the set of six predictors that includes time, and a 2-D analysis on the spatial coordinates.252

We define an algorithm that works consistently for both 1-D and 2-D cases and automatically253

adapts the algorithm resolution to the available data. We associate to each event in the catalogue a254

”window” of the N ”nearest” neighbouring events. Then, for each window we determine the MLE255

b-value, under the assumption of a constant magnitude distribution, according to Equation 8. Note256

that we use the MLE b-value simply as a statistic on the data, without any reference to its uncertainty257

or evaluating the appropriateness of the Gutenberg-Richter model that it defines.258

What remains is to define the concept of ”nearest” that we apply. Although it is possible to use259

the Euclidean distance in terms of the covariate at hand (i.e., the difference in predictor values in260

1-D, or the geometric distance in 2-D space), we have chosen instead to use the Euclidean distance in261

terms of the sequence number on each of the covariates. For space this means that we first define for262

each event a sequence number for both coordinates. This choice of nearest neighbourhood definition263

was made for a practical purpose. Using sequence numbers, the statistics of the null-hypothesis (i.e.,264

constant magnitude distribution) are exactly the same for all 1-D analyses. Using the distance in265

terms of the covariate values, however, can lead to slightly different window configurations for each266

predictor and therefore slightly different statistics.267

We use windows of N = 51 and N = 101 events. These choices are to a large extent arbitrary,268

but naturally represent a sort of compromise between resolution and stability. Within the resolution269

limits imposed by the size of the windows, the moving window analysis is sensitive to any type of b-270

value variation in the 1-D or 2-D domain considered and therefore is suitable for exploratory research.271

However, for the benefit of model building for forecasting purposes and hazard and risk assessment, it is272

more practical to consider simpler models with a limited number of parameters. These are introduced273

in the next section.274

If there are spatiotemporal variations in the b-value, or if a prospective predictor does carry275

information on b-values variations, then we may expect the b-value variability among the collection276

of windows higher than if the b-value would actually be a constant. Like Schorlemmer, Neri, Wiemer,277

and Mostaccio (2003), we choose the difference between the maximum and the minimum b-value as278

a statistic representing these variations, and call it the min-max statistic. The min-max statistic279
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obtained for the observed catalogue can be compared with the distribution of this statistic under the280

null hypothesis to determine its significance.281

2.4.3 Functional forms and maximum-likelihood estimation282

If we can establish that a certain reservoir property carries information on the magnitude distribution283

we may try to exploit the predictive power of such property for more precise forecasting. We apply284

a total of 5 functional forms for the scalar predictor/covariate c ∈ [0, 1], with one, two or three free285

parameters (θ0, θ1, θ2):286

• constant: b = θ0,287

• linear: b = θ0 + (θ1 − θ0)c,288

• quadratic: b = θ0 + (θ1 − θ0)c+ θ2c(c− 1),289

• step: b = θ0 + (θ1 − θ0)H(c− θ2), and290

• hyperbolic tangent: b = θ0 + θ1(1− tanh (θ2 × c)),291

with H(c) the Heaviside step function. For our statistical investigations the constant model represents292

the null hypothesis. In all cases we determine the maximum-likelihood parameter estimates on both293

the observed data and on the synthetic realizations (by random shuffling) of the null hypothesis. The294

linear and the step model are subjected to significance tests. In particular, we use both the parameter295

difference (θ1 − θ0) and the (maximum) likelihood as test statistics. The quadratic model is used296

in addition to compare the performance of the models in terms of their maximum-likelihood. We297

look at the added value of the extra quadratic term relative to the linear model and we compare the298

performance of the quadratic and step models in relation to their equal number of parameters.299

Finally, the hyperbolic tangent (tanh) model is used, albeit only for the induced stress predictor, as300

it is used in the Groningen source model of S. J. Bourne and Oates (2020). We note that for the tanh301

model we apply a slightly different scaling for the covariate. To reproduce the model of S. J. Bourne302

and Oates (2020) we need to associate c = 0 with the zero induced stress rather than with the lowest303

value of stress in the catalogue as shown in Figure 5. The value c = 1 is still associated with the304

maximum value of stress in the catalogue.305

2.4.4 Cramér-von Mises test306

The maximum-likelihood regression of the step model effectively leads to a partitioning (in two parts)307

of both the predictor range and the catalogue ordered according to this predictor, each with a constant308

b-value. The significance of this partition can be further studied by a two-sample goodness-of-fit test.309

Such a test attempts to reject the null hypothesis that the two samples are actually generated by310

the same distribution. Commonly applied tests include Kolmogorov-Smirnov, Anderson-Darling, and311

Cramér-von Mises (Stephens, 1970; Darling, 1957). For our experiments we picked the Cramér-von312

Mises test as it turned out to be the most efficient in terms of computation time, while there was no313

particular reason to prefer one over the other.314

Important to note, however, is that the p-value result from the goodness-of-fit test cannot be used315

without the following consideration. Due to the maximum-likelihood optimization of the step model,316

the two subsets are not completely independent anymore. In fact, the total likelihood of the step317

model benefits if both subsets are as dissimilar as possible. As a result, an overabundance of low318

p-values is to be expected even for the null hypothesis. Therefore, the Cramér-von Mises test needs to319

be recalibrated for this particular purpose. This is achieved by the experiment illustrated in Figure 6.320

The yellow curve shows that the Cramér-von Mises test works as expected for random partitions of a321

Groningen-sized constant b-value catalogue. The blue curve shows that introducing the optimization322

step compromises the test results. However, a correction is obtained relatively easily by applying the323

inverse CDF of the p-value distribution (blue curve). The formal test result appears on the horizontal324

axis, while the corrected result appears on the vertical axis. A formal Cramèr-von Mises p-value of325

0.05 should be corrected to a p-value of 0.36 for this experiment (as indicated by the grey crosshair).326

8



[Figure 6 about here.]327

2.4.5 Likelihood ratio and the Akaike Information Criterion328

As we investigate a total of six prospective predictors and five functional forms, we have quite a329

collection of statistical models for which we can assess the performance in terms of their maximum-330

likelihood with respect to the Groningen observations. At this point we immediately want to make the331

disclaimer that we do not intend to apply these maximum-likelihood models directly to hazard and332

risk assessments. For that purpose we prefer to apply the models in a Bayesian context, where we can333

take all uncertainties into account and make use of probability distributions of the model parameters334

rather than just the maximum-likelihood point estimates used in this study. Moreover, we would like335

to submit these models to pseudo-prospective testing and performance assessment before deciding on336

their use (Zechar, Gerstenberger, & Rhoades, 2010; S. J. Bourne et al., 2014, e.g.,).337

That being said, model selection is commonly based on the likelihood-ratio test and information-338

theoretical extension such as the Akaike Information Criterion (Burnham, Anderson, & Huyvaert,339

2011; Lewis, Butler, & Gilbert, 2011, e.g.,). These methods simply take maximum-likelihood results340

as an input.341

The Akaike Information Criterion AICj for model j is defined as:

AICj = −2 logLj + 2pi, (11)

where pi is the number of model parameters (or degrees of freedom therein). According to this342

definition, a lower AIC corresponds to a better performance. Two models that differ by ∆p degrees of343

freedom are considered to have an equal performance if their likelihoods differ by a factor e−∆p. The344

inclusion of pi in equation (11) is basically a bias correction that compensates for the higher likelihood345

values expected for models with a higher number of parameters under the null hypothesis that these346

parameters are not required.347

The Akaike likelihood ratio Rij between models i and j is basically a bias corrected likelihood
ratio:

Rij = exp (AICi −AICj)/2 = e(pi−pj)
Lj

Li
. (12)

We compute AIC-corrected likelihood ratio’s with respect to the constant b-value null hypothesis.348

This gives us relative measures of the model performance in terms of the relative likelihood. From an349

information-theory perspective these numbers indicate the relative probability that model j (relative350

to model i) is able to minimize the information loss inherent to the abstraction of reality in terms of351

a (mathematical) model.352

We like to note that during the evaluation of the results of our analysis we found out that the353

Akaike formula (11) does adequately compensate the expected likelihood gain for the step model,354

as illustrated in Figure 7. Although the constant model is a nested model, i.e., special case of the355

step model, the likelihood ratio statistics are not chi-square distributed. It turns out that relative356

to the null hypothesis, the step model has an advantage that is higher than the number of its free357

parameters (3) would suggest. As a result, the AIC likelihood ratio’s for the step model relative to358

the other models are expected to be inflated, i.e., biased by over-fitting. The performance results of359

the step models should therefore be interpreted with restraint. We speculate that the cause is related360

to the discontinuity of the model, and to the fact that the null hypothesis does not constrain the third361

parameter, i.e., the location of the discontinuity. Exploration of this specific hypothesis is beyond362

the scope of this paper. We expect that in a pseudo-prospective model performance testing procedure363

(Zechar et al., 2010), that we anticipate any new model to be subjected to before application in hazard364

and risk assessment, this issue will be treated adequately.365

[Figure 7 about here.]366
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3 Results367

The results of the analyses as described in Section 2 are shown in Figures 8 to 13, and in Tables 2 and368

3.369

Figure 8 shows the result of the spatial moving window analysis. A NW-SE trend can be seen in370

both the 51-event and the 101-event windows. The 51-event window results in a wider spread of MLE371

b-values. We determine the difference min-max statistic for both window sizes and compare it with372

the null hypothesis distribution. This comparison is visualized for both the spatial and the temporal373

moving windows in Figure 9. The Figure shows that the test statistic for temporal moving windows374

is not particularly special, as it is exceeded quite frequently in the null hypothesis distribution. As a375

result it cannot be used to reject the null hypothesis. The statistic for the spatial moving windows376

however is quite high and rarely exceeded for the null hypothesis. The corresponding p-values are 0.03377

and 0.07 for the 51- and 101-event window sizes respectively. The moving window analysis does not378

resolve any trend or variation in time, but it is unlikely that the magnitude distribution is constant in379

space.380

The moving window analyses for the other predictors follow the same procedure. The p-values are381

provided in Table 2, to be discussed below.382

[Figure 8 about here.]383

[Figure 9 about here.]384

Figure 10 shows a visual summary of the moving window and maximum-likelihood analyses for385

all six considered covariates. The maximum-likelihood results are visualized in the spatial context in386

in Figures 11 and 12. Note that due to the static, spatial nature of these figures, the trends for the387

covariates reservoir thickness and topographic gradient, which are static spatial covariates, are easier388

to discern than for the dynamic covariates. It is interesting to see the difference in the empirical and389

MLE magnitude distributions for the catalogue partitioning that the step model effectively creates.390

These results are on display in Figure 13.391

[Figure 10 about here.]392

[Figure 11 about here.]393

[Figure 12 about here.]394

[Figure 13 about here.]395

Table 2 summarizes the p-values of all statistical tests on the moving window and maximum-396

likelihood analyses. The table reveals that reservoir thickness as a predictor consistently scores lowest397

p-values, indicating a low probability that it does not carry any information on the magnitude distri-398

bution. To a lesser extent the same holds for topographic gradient on wide set of tests, and induced399

stress in particular for the linear trend model. In summary it appears that static factors are more400

informative than dynamic factors.401

[Table 2 about here.]402

Finally, Table 3 shows the relative likelihood of the various combinations of predictor and functional403

form. In this table we also include the results for the quadratic function for which we do not provide404

visualizations. The Table shows that the extra degree of freedom for quadratic models relative to405

the linear models does not lead to better results.The Table also shows an (apparently) exceptional406

performance of the step function, which we discuss in Section 2.4.5, and accompany with a warning to407

interpret with restraint. Overall, the Table shows that the maximum-likelihood models for reservoir408

thickness provide the best performance relative to the other predictors.409

[Table 3 about here.]410
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4 Discussion411

Previous analysis of variations of the magnitude distribution in the Groningen field focused on induced412

stress as the predicting covariate (S. J. Bourne & Oates, 2020). In this study, we have investigated the413

possibility of other covariates performing better as predictors of the observed earthquake magnitude414

distribution. Our exploratory moving window analysis indicated that while temporal variation in b-415

value appear to be statistically insignificant, there are significant spatial variations. In our subsequent416

search for a better b-value predictor, we tested a number of covariates, each of them with a distinct417

physical relation to the Groningen gas field. Reservoir thickness, a static property, unaffected by the418

gas production process, proves to be the statistically superior predictor of the b-value spatial variation.419

In order to facilitate the comparison between different models, we have focused our attention on420

the relative performance of the MLE models. Although this provides a first-order indication of relative421

predictive performance, the performance assessment is not yet in line with the approach followed in422

seismic hazard and risk analysis. For future integration the models should be cast in a Bayesian423

framework, including the definition of a prior distribution for the model parameters and taking into424

account the full likelihood distribution of the model parameters conditional on the observation. In425

this framework a forecast is based on an integration of the posterior model parameter distribution.426

Therefore, ultimately, it is the performance of this integrated prediction that is of prime interest.427

Nevertheless, our MLE based assessment provides valuable insights. Variations of b-value over the428

Groningen field seem to be predominantly controlled by static rather than dynamic factors, resulting429

in significant spatial variations, but (for the field as a whole) no significant changes in time. We430

find that the dynamic induced stress predictor does resolve a significant linear trend, albeit at lower431

significance level than reservoir thickness. Future work may investigate combinations of predictors to432

establish whether the static factors are sufficient predictors for b-value variations by itself, or that433

dynamic factors are able to contribute significantly.434

Although our predictors were chosen because of their direct physical relation to the Groningen435

gas field, it should be noted that we are strictly looking at correlations. As such, the famous wisdom436

correlation does not imply causation also applies here. We do not propose a physical model that437

explains the observed effectiveness of the different predictors, nor do we claim that there necessarily is438

a direct causal relation between the more effective predictors (e.g. reservoir thickness) and the b-value.439

For reservoir thickness, we have shown that it is statistically very unlikely that the observed correlation440

is purely due to chance. However, it is possible (and perhaps even likely) that a confounding factor441

exists (i.e. that reservoir thickness itself is not the driving mechanism behind the b-value difference).442

5 Conclusions443

We have investigated spatiotemporal variations of magnitude distributions as characterized by the444

Gutenberg-Richter b-value in the Groningen gas field. We have found that spatial variations are more445

pronounced than variations in time. In addition we have investigated the predictability of observed446

variations in terms of a number of physical properties of the reservoir, including both static and447

dynamic properties, the latter being directly coupled to gas production.448

We find evidence that observed variations are more likely to be controlled by static rather than by449

dynamic properties. Predictions in terms of the static properties topographic gradient and reservoir450

thickness lead to very low likelihood, around 2% and lower, of the null-hypothesis (i.e., no relation,451

or constant b-value) on a variety of statistical tests. Of the dynamic properties, induced stress is the452

most convincing predictor, still resolving a significant linear trend for the b-value.453

In terms of relative likelihood, statistical models for b-values based on reservoir thickness out-454

perform models based on the other predictor properties. An MLE linear model based on reservoir455

thickness outperforms the MLE linear model based on induced stress by a factor of 3. The hyperbolic456

tangent model based on induced stress, which is currently being applied in hazard and risk assessment457

models (S. J. Bourne & Oates, 2020), does not manage to improve on the linear trend with its extra458

parameter.459
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We find that step models, in general, reach higher likelihoods than linear and quadratic models,460

but we also note that these results may be inflated due to a level of over-fitting that is not adequately461

compensated for in the Akaike Information Criterion.462

The main conclusion of this study is that reservoir thickness is a strong predictor for spatial b-463

value variations in the Groningen field. We propose to develop a forecasting model for Groningen464

magnitude distributions conditioned on reservoir thickness, to be used alongside, or as a replacement,465

for the current models conditioned on induced stress.466
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List of Figures613

1 Number of earthquakes in the Groningen field in different magnitude categories.614

This Figure is created by first rounding the magnitudes to 1 decimal place and615

subsequently assigning the earthquakes to their magnitude categories. Only616

events within the outline of the Groningen gas field are included (see also617

Figure 2). Top view: all recorded events in said space/time window. Bottom618

view: the events above the minimum magnitude included in the current study619

(336 in total). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18620

2 Map view of the Groningen gas field and its location inset (in red at the top-621

left corner). Locations of all recorded induced earthquakes at any time in the622

vicinity are shown by grey dots. The colored dots represent the earthquakes623

included in the current study, i.e., within the field outline and the time span624

from 1995-01-01 to 2022-01-01, and (1 decimal rounded) magnitudes of 1.5 and625

higher. The colors represent the magnitude categories, analogous to Figure 1. 19626

3 Empirical complementary cumulative distribution function (CCDF), or proba-627

bility of exceedance per event. Also shown is the maximum-likelihood Gutenberg-628

Richter distribution under the assumption of a constant b-value. MLE for the629

constant b-value is 0.96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20630

4 The six predictors for b-value variations investigated in this study represented631

as contour plots within the outline of the Groningen field. Each figure is632

individually scaled, where green colors correspond to the lowest, orange to633

the highest values. Representative values for the covariates are presented in634

Table 1. For the dynamic predictors (pressure drop, reservoir compaction and635

induced stress), the state at the end of the observation period (i.e., 2022-01-01)636

is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21637

5 For each of the six prospective predictors, the magnitudes of the earthquakes638

in the seismic catalogue are plotted against the predictor value. Each predictor639

provides it own specific ordering and spacing of the catalogue. . . . . . . . . . 22640

6 Results of applying the Cramér-von Mises test on two subsets of 10,000 ran-641

domly drawn catalogues (N = 336, b = 0.96). For each catalogue, a random642

split point is chosen in the catalogue, and an optimal split point is found by643

considering the step location of the maximum-likelihood step function. The644

Cramér-von Mises test is then applied, and a p-value is obtained for subsets645

created by the random split point and the optimal split point. The blue curve646

shows a CDF of p-values obtained over 10,000 catalogues for the optimal split647

point, while the yellow curve shows the CDF for the random split points. The648

Cramér-von Mises p-values for the yellow curve are distributed homogeneously649

between 0 and 1, while the blue curve shows an overabundance of low p-values.650

This indicates that the likelihood optimization corrupts the test, which should651

be corrected for. In fact, the blue curve provides the correction: the formal652

test result appears on the x-axis, while the corrected test result appears on the653

y-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23654
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7 Likelihood ratio statistics for maximum-likelihood linear, quadratic and step655

b-value functions, relative to the maximum-likelihood constant b-value model.656

The statistics are obtained for 1,000 random reassignments of the magnitudes657

to the catalogue’s reservoir thickness samples. Other predictors give compara-658

ble results. Both the linear and quadratic functions closely follow a maximum-659

likelihood chi-square distribution (dashed curves), with degrees of freedom very660

close to the theoretic values of 1 and 2, for functions with 1 and 2 degrees of661

freedom more, respectively, than the constant function. The step function,662

however, also has just two more parameters than the constant function, but663

apparently is expected to perform much better than the quadratic, and appar-664

ently is not chi-square distributed (the dashed curve is the maximum-likelihood665

chi-square fit to the data). As a result, the Akaike Information Criterion does666

not compensate adequately for the surplus degrees of freedom. . . . . . . . . 24667

8 B-values resulting from the spatial moving window analysis. Each earthquake668

is assigned the MLE b-value for the sub-catalogue consisting of the event itself669

and its 50 (left) or 100 (right) nearest neighbors. . . . . . . . . . . . . . . . . 25670

9 The graphs show empirical distributions (CCDF) for 1,000 51-event (top) and671

101-event (bottom) moving window analyses in both time and space on random672

realizations of the null-hypothesis obtained by magnitude shuffling. The test673

statistic is the difference between the maximum and the minimumMLE b-value674

estimate in the moving window collection. Vertical bars indicate the observed675

values for the Groningen catalogue. The corresponding values on the vertical676

axis indicate the p-value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26677

10 For each predictor, 5 lines are shown. In silver (51-event) and black (101-event)678

the moving windows analyses(see 2.4.2). We have chosen to plot the results for679

each window at the mean value of the contributing covariates. In blue, orange680

and green, the maximum-likelihood estimates of the constant, linear, and step681

models, respectively. Note that the moving-window results and the maximum-682

likelihood models are each independently generated from the magnitude data683

in Figure 5. In particular, the MLE functions are not intended to fit the moving684

window results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27685

11 The MLE linear trend models for each predictor result in a b-value for each686

event in the catalogue. Here, we show the b-value assigned to each event in687

its spatial context. Yellow shades correspond to lower, blue shades to higher688

values of the covariate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28689

12 The MLE step-function models for each predictor result in a b-value for each690

event in the catalogue. Here, we show the b-value assigned to each event in691

its spatial context. Yellow shades correspond to lower, blue shades to higher692

values of the covariate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29693

13 The MLE step-function models effectively separate the catalogue into 2 sub-694

catalogues, each with their own b-value: one for the low covariate values,695

and one for the high covariate values. This Figure shows the resulting sub-696

catalogues with their b-values. . . . . . . . . . . . . . . . . . . . . . . . . . . 30697
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Figure 1: Number of earthquakes in the Groningen field in different magnitude categories.
This Figure is created by first rounding the magnitudes to 1 decimal place and subsequently
assigning the earthquakes to their magnitude categories. Only events within the outline of
the Groningen gas field are included (see also Figure 2). Top view: all recorded events in said
space/time window. Bottom view: the events above the minimum magnitude included in the
current study (336 in total).
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Figure 2: Map view of the Groningen gas field and its location inset (in red at the top-
left corner). Locations of all recorded induced earthquakes at any time in the vicinity are
shown by grey dots. The colored dots represent the earthquakes included in the current
study, i.e., within the field outline and the time span from 1995-01-01 to 2022-01-01, and
(1 decimal rounded) magnitudes of 1.5 and higher. The colors represent the magnitude
categories, analogous to Figure 1.
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Figure 3: Empirical complementary cumulative distribution function (CCDF), or probability
of exceedance per event. Also shown is the maximum-likelihood Gutenberg-Richter distribu-
tion under the assumption of a constant b-value. MLE for the constant b-value is 0.96.
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time pressure drop

reservoir thickness reservoir compaction

topographic gradient induced stress

Figure 4: The six predictors for b-value variations investigated in this study represented as
contour plots within the outline of the Groningen field. Each figure is individually scaled,
where green colors correspond to the lowest, orange to the highest values. Representative
values for the covariates are presented in Table 1. For the dynamic predictors (pressure drop,
reservoir compaction and induced stress), the state at the end of the observation period (i.e.,
2022-01-01) is shown.
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Figure 5: For each of the six prospective predictors, the magnitudes of the earthquakes in
the seismic catalogue are plotted against the predictor value. Each predictor provides it own
specific ordering and spacing of the catalogue.
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Figure 6: Results of applying the Cramér-von Mises test on two subsets of 10,000 randomly
drawn catalogues (N = 336, b = 0.96). For each catalogue, a random split point is chosen
in the catalogue, and an optimal split point is found by considering the step location of the
maximum-likelihood step function. The Cramér-von Mises test is then applied, and a p-value
is obtained for subsets created by the random split point and the optimal split point. The
blue curve shows a CDF of p-values obtained over 10,000 catalogues for the optimal split
point, while the yellow curve shows the CDF for the random split points. The Cramér-von
Mises p-values for the yellow curve are distributed homogeneously between 0 and 1, while
the blue curve shows an overabundance of low p-values. This indicates that the likelihood
optimization corrupts the test, which should be corrected for. In fact, the blue curve provides
the correction: the formal test result appears on the x-axis, while the corrected test result
appears on the y-axis.
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Figure 7: Likelihood ratio statistics for maximum-likelihood linear, quadratic and step b-
value functions, relative to the maximum-likelihood constant b-value model. The statistics
are obtained for 1,000 random reassignments of the magnitudes to the catalogue’s reservoir
thickness samples. Other predictors give comparable results. Both the linear and quadratic
functions closely follow a maximum-likelihood chi-square distribution (dashed curves), with
degrees of freedom very close to the theoretic values of 1 and 2, for functions with 1 and 2
degrees of freedom more, respectively, than the constant function. The step function, however,
also has just two more parameters than the constant function, but apparently is expected to
perform much better than the quadratic, and apparently is not chi-square distributed (the
dashed curve is the maximum-likelihood chi-square fit to the data). As a result, the Akaike
Information Criterion does not compensate adequately for the surplus degrees of freedom.
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Figure 8: B-values resulting from the spatial moving window analysis. Each earthquake is
assigned the MLE b-value for the sub-catalogue consisting of the event itself and its 50 (left)
or 100 (right) nearest neighbors.
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Figure 9: The graphs show empirical distributions (CCDF) for 1,000 51-event (top) and 101-
event (bottom) moving window analyses in both time and space on random realizations of the
null-hypothesis obtained by magnitude shuffling. The test statistic is the difference between
the maximum and the minimum MLE b-value estimate in the moving window collection.
Vertical bars indicate the observed values for the Groningen catalogue. The corresponding
values on the vertical axis indicate the p-value.
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Figure 10: For each predictor, 5 lines are shown. In silver (51-event) and black (101-event)
the moving windows analyses(see 2.4.2). We have chosen to plot the results for each window
at the mean value of the contributing covariates. In blue, orange and green, the maximum-
likelihood estimates of the constant, linear, and step models, respectively. Note that the
moving-window results and the maximum-likelihood models are each independently generated
from the magnitude data in Figure 5. In particular, the MLE functions are not intended to
fit the moving window results.
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Figure 11: The MLE linear trend models for each predictor result in a b-value for each event
in the catalogue. Here, we show the b-value assigned to each event in its spatial context.
Yellow shades correspond to lower, blue shades to higher values of the covariate.
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Figure 12: The MLE step-function models for each predictor result in a b-value for each event
in the catalogue. Here, we show the b-value assigned to each event in its spatial context.
Yellow shades correspond to lower, blue shades to higher values of the covariate.
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Figure 13: The MLE step-function models effectively separate the catalogue into 2 sub-
catalogues, each with their own b-value: one for the low covariate values, and one for the
high covariate values. This Figure shows the resulting sub-catalogues with their b-values.
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predictor unit min max

time UTC 1995-01-24T10:38 2021-12-28T20:19
reservoir thickness m 128. 310.
topographic gradient - 0.0145 0.0442
pressure drop bar 106. 279.
reservoir compaction m 0.0787 0.349
induced stress MPa 0.303 0.991

Table 1: Predictor value ranges as sampled by the catalogue.
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predictor moving window

maximum likelihood

b-value range

maximum likelihood

linear trend model

maximum likelihood

step model

51 events 101 events gradient likelihood step size likelihood C-vM*

time 22.% 73.% 23.% 24.% 84.% 54.% 37.%

reservoir thickness 0.77% 0.31% 0.1% 0.2% 28.% 0.2% 0.35%

topographic gradient 1.7% 19.% 1.5% 2.2% 16.% 1.% 8.3%

pressure drop 15.% 6.2% 38.% 38.% 26.% 15.% 33.%

reservoir compaction 21.% 4.8% 3.1% 3.2% 45.% 8.6% 20.%

induced stress 17.% 19.% 0.5% 0.6% 33.% 5.8% 6.9%

Table 2: For each of the six prospective predictors for b-value variations in the Groningen field,
a total of seven statistics are compared to the distribution of results generated for the null-
hypothesis, in which the predictor does not carry any information on the b-value. Realizations
of the null-hypothesis are generated by random shuffling of the observed magnitudes with
respect to the predictor values. The exceedance probabilities, i.e., p-values, indicate the
probability that the observed statistics are the result of chance. Lower values give stronger
stronger evidence for rejecting the null hypothesis that a b-value is constant. Green colors
give a visual indication of the strength of the evidence.
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predictor functional form no. parameters relative likelihood (AIC)

-any- constant 1 1.

time linear 2 0.72

quadratic 3 0.26

step 3 0.88

reservoir thickness linear 2 28.

quadratic 3 10.

step 3 250.

topographic gradient linear 2 3.9

quadratic 3 4.2

step 3 43.

pressure drop linear 2 0.55

quadratic 3 0.53

step 3 4.4

reservoir compaction linear 2 3.1

quadratic 3 1.1

step 3 6.5

induced stress linear 2 11.

quadratic 3 4.5

step 3 9.9

tanh 3 4.9

Table 3: Relative likelihood of predictive models for b-value variations in the Groningen
field consisting of simple functional forms conditioned on six possible predictor covariates.
The likelihoods are calculated according to the Akaike Information Criterion and normalized
relative to the likelihood of the constant model, or null hypothesis. Red and green color
shades indicate worse and better performance than the null hypothesis, respectively.
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